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In this study an attempt is presented at the quantitative formulation of the old intuitive criterion 
for the characterization of chemical reactivity known as the principle of the least motion. The 
proposed formulation originates from the abstract mathematical model, within the framework 
of which the criterion of minimal structural changes is realized by the requirement of minimal 
changes of the state vectors in the Hilbert space of electron states. The presented approach is 
demonstrated on the practical example of pericyclic reactions for H hich its results correctly 
reproduce the conclusions of Woodward-Hoffrnann rules. 

One of the first attempts at the formulation of selection rules in chemical reactivity 
is represented by the old intuitive idea that chemical reactions prefer those reaction 
paths along which the reacting molecules undergo minimal structural changes. 
Stimulated by this idea, Rice and Teller introduced the so-called least-motion 
principle (LMP) in which the criterion of minimal structural changes was identified 
with the requirement of minimal changes in nuclear and electron configurations 
of reacting molecules’ - 2 .  In spite of simplicity and conceptual attractiveness of the 
above intuitive formulation, its impact on the formulation of practically applicable 
selection rules has been so far rather limited. This is apparently due to the fact that 
the principle is difficult to quantify. The first attempts at the systematic exploitation 
of the LMP3-’ were based on the model of the so-called harmonic distortions which, 
however, expressed the requirements of the principle only from the point of view 
of the minimization in the positions of nuclei, without taking into account the second, 
more abstract criterion of minimal changes in electron configurations. Although the 
applications of such simplified models were quite successfull in  a number of cases, 
their failure in some instances (several examples demonstrating the failure of the 
so-called principle least nuclear motion are given in ref.*), as well as the complete 
universality of purely electronic Woodward-Hoffmann rules’ suggest that a satis- 
factory LMP cannot be formulated without taking into account just the neglected 
electronic part of the LMP criterion. 

A few studies attempting at the satisfactory solution of this problem were already 
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reported from which we note the recent report by Igawa and Fukutome" and also our 
own studies"-13 in which a simple topological approach was introduced, charac- 
terizing the electron reorganization in terms of the so-called similarity index. Despite 
remarkable success of this simple approach in rationalization of various aspects 
of pericyclic reactivity, the proposed model has, however, one important conceptual 
limitation. This limitation consists in the complete lack of the variational character 
which normally is one of the fundamental attributes of the LMP. Our aim in this 
study is just to remedy this important limitations and to propose a new, truly varia- 
tional formulation of the LMP. The basis of our approach is a simple idea identifying 
the criterion of minimal changes in electron configurations with the requirement of 
minimal changes of state vectors in the Hilbert space of electron states of the system. 
Using this approach we demonstrate that the above abstract criterion of minimal 
structural change is equivalent to the search for the line of the shortest length con- 
necting the reactant and the product in the above space. In connection with this 
simple model it is necessary to stress that the complete neglect of atomic nuclei 
represents, of course, a certain simplification, but since the similar topological 
appr~ximation '~* ' '  was successful in the complete reproduction of Woodward- 
-Hoffmann rules', we believe it to be satisfactory for our purpose as well. 

THEORETICAL 

Let us consider the real Hilbert space 3Y of electron states of the system. Assuming the 
separability of the space, an arbitrary vector can be expressed in terms of Einstein 
sum-convention over the pair of corresponding co- and contravariant indices as 

where are basis vectors and xi the contravariant coordinate components. 
Moreover, let the norm on &' be defined in terms of scalar product (+I$) by the 
usual relation 

1/11/11 = ((b+fu)1'2 * (2) 

As a consequence of the induction of the metrics by this norm, the length element 
dl  can be expressed in the form 

where 
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Using the relations ( I ) ,  (2) and (4 )  the Eq. (3) can be finally rewritten in terms of 
metric tensor gij as 

d12 = gi j  dx' d d  , (5 )  

(6) 

where 

Because it is convenient to work with unit vectors we will further require them to 
fulfill the identity 

This can be most simply achieved by using the transformation into the coordinates 
5' satisfying transformation relations 

Using this relation, the condition (7) can be fulfilled identically when setting 

As a consequence of the transformation (8), the length element d l  can be rewritten 
in the form analogous to the relation (5):  

in which the metric tensor hij  in the coordinates ti is defined as 

and where V k  denoting the partial derivative aptk is, for convenience, included 
into both bra and ket. 

After having introduced these fundamental relations it is possible to start the 
formulation of the LMP. This formulation originates from the scalar product of 
two different vectors, one with the coordinates ti and the other with parametric 
coordinates qj: 

K = (+(O l@(tl)> ' ( 1 3 )  
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On combining the Eq. (1) with relations (8-10) the number of both coordihate 
and parametric independent variables in this product reduces by one. This fact can 
be symbolically written as 

On the basis of this relation and using the prime symbol indicating the omission 
of the first coordinate and parametric component, the Eq. (13) can be alternatively 
expressed in the form 

Due to normalization in the denominator of the right part of this relation, the value 
of K is bound by the inequality 

0 4 pqt’; ?’)I 2 1 (16) 

attaining its maximum K = 1 for t‘ = q’. 

Let us consider now an arbitrary ket Ilc/(q’)) on 2 with the parametric coordinates 
q’ (because of the normalization condition (7) the first component q’ is not inde- 
pendent, but is given analogously to Eq. (9) ) .  The LMP can be now formulated in the 
form of a condition requiring the infinitesimal transformation of this ket into another 
neighboring ket [t,b(t’)) to proceed in the direction ensuring the maximization of 
the scalar product (15). This requirement is equivalent to the search for the direction 
in which the derivative of the K ( t ’ ;  11’) for t‘ = q‘ attains its minimum. The direc- 
tional derivative of the K is given by 

d 
- K  = d V , K ,  
dl  

where the components oi of the unit vector characterizing the direction are given as 

. dt’  
GI=-, 

dl 

The direct calculation of the gradient of the scalar product (15) at the point t‘ = q’ 
demonstrates, however, that 

V,K(q’; 11’) = 0 (19) 

for any i .  This implies that there is no direction in which the limiting first derivative 
of K is nonzero. This is a natural consequence of the fact that for t’ = q‘ the scalar 
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product K attains its local maximum. This suggests that the search of the appropriate 
direction satisfying the least motion criterion should be based on the second direc- 
tional derivative defined by 

d2 d 
d12 dl 
- K = - (d ViK) , 

which can be in the limiting case, taking into account the relation (19), expressed 
alternatively as 

In this connection it is, however, necessary to realize that because of above men- 
tioned extremal properties of K the second derivative is always negative, so that the 
LMP will be satisfied by the infinitesimal transformation in a direction ensuring the 
minimal absolute value of this derivative. The direct calculation of this quantity 
demonstrates that the individual components of the tensor ViVjK at the point 
5’ = q‘ are given by the elements 

Inspection of this relation immediately demonstrates that the corresponding quantity 
is in fact only the function of the parametric variables q’. Moreover, since the above 
consideration apparently hold for an arbitrary vector from 2, it is possible to 
substitute the parametric variables by the previously introduced coordinates t’. 
After performing this formal change, let us continue in the formulation of the LMP. 

Most important in this connection is the fact that in spite of their generality, our 
considerations were rather limited. This limitation concerns primarily the fact that 
the above relations express the LMP criterion only locally whereas the satisfactory 
solution apparently requires, as already stressed in the study by Fukutome”, the 
global formulation. The criterion of globality can be incorporated into the above 
formalism very simply by requiring not the minimization of the infinitesimal changes 
of the scalar product K at every individual step but the minimization of the whole 
process along the appropriate curve (the sequence of infinitesimally close unit vectors 
from 2) having I$(a’)} and 1$(fi’)) as starting and the final point respectively. 
This can be done most simply by introducing the curve integral L summing up the 
above local quantity in the direction tangential to this curve: 

L =  0’0’ 1:: ViVjK dl  
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This integral can be further simplified by expressing alternatively the length element 
dl. For this purpose it i s  first of all necessary to express the total differential of the 
variable r' as a function of the remaining variables 5' by 

where the summation over Greek indices is used to denote the exclusion of unity 
from the whole set of these indices. Using Eqs (2) and (9) this relation can be further 
simplified to the alternative form 

On the basis of this relation the Eq. (11) can be rearranged as 

Substituting for 

pl$> = 14L 

p,lc/> = t1p,4> 
and 

in Eqs (9) and (12),  the Eq. (26) can be transformed into the form 

If we now realize, that as a consequence of the relation (14) the only nonzero ele- 
ments in the integrand of the Eq. (23)  are the terms containing components of the 
tensor V,VvK, then combining the Eqs (2), (fa), (22) and (29) the Eq. (23) reduces 
to the final form 

L = - Jaydl. (30) 

This suggests that the reaction path satisfying the LMP criterion of minimal struc- 
tural changes can be naturally expressed in the form of variational condition which 
is equivalent to the search 

6L= 0 (31) 

for the geodesic line in the space characterized by the metric relation (29). 
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RESULTS AND DISCUSSION 

In the following part the practical exploitation of the above formalism will be de- 
monstrated on a concrete example of the alternative reproduction of Woodward- 
-Hoffmann rules. It will be shown that in accord with the requirements of the 
LMP, the “distance” of the reactant and the product in allowed reactions is indeed 
lower than in the forbidden ones. In order to maintain the immediate continuity 
with our previous studies dealing with the Woodward-Hoffmann rules and also 
because of topological nature of the approximation describing the structure of the 
reacting molecules by electron wave functions only, the whole procedure will be 
mathematically expressed at the simplest possible level of the so-called overlap 
determinant method15. For this purpose let us assume the two dimensional Hilbert 
space with the basis spanned by the approximate electron wave functions @R end 
t j P  describing the ground states of the reactant and the product, respectively. Ex- 
pressing now, in harmony with the spirit of the overlap determinant method these 
wave functions in the common basis of atomic orbitals*, the general wavefunction 
from the above truncated Hilbert space can be expressed, using e.g. the polar co- 
ordinates, in the form of linear combination 

$ = @($R cos q + $P sin (P) a (32) 

Assuming the proper normalization of the basis functions (the norm ( l @ R l l  and I I @ p I I  
be unity) and using the relation (9) with the definition of the overlap integral S :  

the unit normalization of the arbitrary wave function (32)  can be ensured by the 
relation 

The square of the length element dl  in this space is given as 

dlz = (1 + S sin 2q) dp2 + 22s  cos 2 q  de d q  + e2(1 - S sin 2 q )  d q 2  , (350)  

which can be, using Eq. ( 3 4 ,  rearranged to the form 

(1 - s y  
dl  = d 9  * 

1 + S sin 2q  

* The details of this transformation, introducing into the formalism the possibility of 
discrimination between the allowed and forbidden reactions can be found in the original stu- 
dies15323 
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Using this result, the general expression (30) for the extent of electron reorganization 
accompanying the concerted transformation R + P can be rewritten in the form 

This expression is especially simple since the concerted nature of the process (32)  
leaves in this case no free variational parameters so that the “length” of the reaction 
path characterizing the global extent of electron reorganization can be calculated 
analytically with the result 

L =  -arccos S . 

This equation is very interesting since the direct parallel between the extent of 
electron reorganization and the overlap integral S immediately confirms not only 
the mutual relation of Woodward-Hoffmann rules and overlap determinant method 
but also demonstrates the expected close correspondence between the Woodward- 
-Hoffmann rules and the least motion principle. In terms of this principle the Wood- 
ward-Hoffmann rules can be thus alternatively formulated in the form of statement 
that the “distance” of the reactant and product ILI is in allowed reactions lower 
than in the forbidden ones. 

This result is very interesting since the idea of representing the chemical reaction 
by a certain trajectory satisfying the extremum requirement of the minimal length 
path appears in various form in a number of different studies10i’6-22. As an example 
it is possible to mention the work by Ugi16, in which the so-called principle of 
minimal chemical distance was introduced and formulated. The same idea was also 
discussed in the studies’ 8i19 dealing with analogously introduced graph-metric 
characteristics and in ref.”. From a number of other related studies it is also 
necessary to mention the study by Igawa and Fukutome”, in which a metric tensor 
was introduced in the nuclear configuration space allowing the characterization 
of the LMP by the geodesic line just as in our case. 

In connection with these studies it is, however, necessary to be aware of the fact 
that their philosophy, despite remarkable parallels with our conclusions, is never- 
theless completely different. This difference manifests itself especially in that whereas 
the requirement to represent the LMP by the least length line was in these studies 
an ad hoc presumption, in our approach it naturally implies from general considera- 
tions about the global change of state vectors in the Hilbert space. The important 
role is played in this connection by the functional (15) ,  since it is just the requirement 
of its minimal change on going from R to P which naturally results in the representa- 
tion of the LMP in the form of length of line. In connection with the above “deriva- 
tion” of the LMP it is perhaps interesting to remark yet another important feature 
of the proposed approach. This feature consists in  that the same procedure of 

(37) 
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minimization of “structural changes” can be used not only for the functional (25 )  
derived from overlap, but another related quantities could be used as well. This 
opens the possibility of deriving the alternative forms of LMP differing only in the 
precise specification of what is actually meant under the vague term of “structural 
change”. In this respect the specification of the structural change by the functional 
( 2 5 )  based on overlap represents apparently only the first crudest approximation 
and better more realistic results could .be perhaps expected from the use of other 
quantities derived e.g. from the density matrices. Such calculations are being per- 
formed in our laboratory and their results will be published elsewhere. 
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